Copper-based electrodes for electrochemical CO₂ conversion

Juqin Zeng¹, Katarzyna Bejtka¹, Adriano Sacco¹, Micaela Castellino², Candido Fabrizio Pirri^{1,2}, Angelica Chiodoni¹

Center for Sustainable Future Technologies @POLITO, Istituto Italiano di Tecnologia, Torino, Italy

2Department of Applied Science and Technology (DISAT), Politecnico di Torino, Torino, Italy

e-mail address: juqin.zeng@iit.it

Electrochemical conversion of CO_2 to value-added products is being intensively investigated. To improve selectivity and overcome sluggish kinetics of the CO_2 reduction reaction (CO_2RR), appropriate electrocatalysts are needed. Cu-based materials are most interesting and widely studied [1].

Our previous work studied Cu-Sn bimetallic electrodes with different surface compositions and nanoarchitectures toward the CO_2RR [2]. The ongoing work studies Cu with various oxide states for converting CO_2 to tunable syngas. We are also exploring other Cu based bimetallic materials such as CuZn and CuSb.

Reference:

[1] H. Xie, T. Wang, J. Liang, Q. Li, S. Sun, Nano Today 21 (2018) 41-54.

[2] J. Zeng, K. Bejtka, W. Ju, M. Castellino, A. Chiodoni, A. Sacco, M.Amin Farkhondehfal, S. Hernández, D. Rentsch, C. Battaglia, C. F. Pirri, Appl. Catal. B: Environ. 236 (2018) 475-482.