Advanced characterization of gate oxides for 4H-SiC MOSFETs

(P. Fiorenza - CNR IMM) Patrick Fiorenza ${ }^{1, a}$, Mario Saggio ${ }^{2, b}$ and Fabrizio Roccaforte ${ }^{1, c}$

4H-SiC MOSFETs are already commercially available, the SiC community is still devoted to optimization of several processing step and to the comprehension of the threshold voltage $\left(\mathrm{V}_{\text {th }}\right)$ instability phenomena [${ }^{\mathrm{i}, \mathrm{i}, \mathrm{i}]}$. These latter are due to electron trapping at near-interfacial oxide traps (NIOTs) that extend spatially into the gate oxide from the SiC interface. Near-equilibrium gate-capacitance [iii] and gate- [iv] and drain-current transient measurements allowed to get insight on the impact of NIOTs on the device characteristics and $\mathrm{V}_{\text {th }}$ stability. In particular, transient gate-capacitance and gate-current measurements allowed us to estimate firstly the position (about 1 nm from the SiC interface) and secondly to quantify the amount ($2 \times 10^{11} \mathrm{~cm}^{-2}$) of the NIOTs. Furthermore, the nature of this NIOTs has been discussed on the basis of the interface microstructure [${ }^{v}$]. Finally, results on the process development and characterization of novel gate oxide with high-permittivity will be presented ["iं].

[^0]
[^0]: [i] A. J.Lelis, R. Green, D. B.Habersat; Materials Science in Semiconductor Processing 78, 32 (2019)
 [ii] F. Roccaforte, P. Fiorenza, G. Greco, R. Lo Nigro, F. Giannazzo, F. Iucolano, M. Saggio; Microelectronic Engineering 187, 66-77 (2018)
 [iii] P. Fiorenza, A. Frazzetto, A. Guarnera, M. Saggio, F. Roccaforte; Appl. Phys. Lett. 105, 142108 (2014);
 [iv] P. Fiorenza, A. La Magna, M. Vivona, F. Roccaforte; Appl. Phys. Lett. 109, 012102 (2016)
 [] P. Fiorenza, F. Iucolano, G. Nicotra, C. Bongiorno, I. Deretzis, A. La Magna, F. Giannazzo, M. Saggio, C. Spinella, F. Roccaforte; Nanotechnology 29, 395702 (2018)
 [vi] P. Fiorenza, M. Vivona, S. Di Franco, E. Smecca, S. Sanzaro, A. Alberti, M. Saggio, F. Roccaforte; Materials Science in Semiconductor Processing 93, 290-294 (2019)

