Structural and electrical properties of ultra-thin Al₂O₃ films grown by seed-layer-free atomic layer deposition on epitaxial graphene <u>E. Schilirò</u>^{1*}, R. Lo Nigro¹, F. Roccaforte¹, I. Deretzis¹, A. La Magna¹, A. Armano^{2,3}, S. Agnello^{2,1}, B. Pecz⁴, I. G. Ivanov⁵, R. Yakimova⁵, S. Di Franco¹, F. Giannazzo¹ The atomic layer deposition (ALD) is the method of choice to deposit uniform and ultra-thin films of high- κ dielectrics on graphene (Gr) for micro- and optoelectronic applications. Because of the lack of out-of-plane bonds in the sp² Gr lattice, nucleation in the ALD process typically requires the pre-functionalization of Gr surface or the deposition of a seed-layer, which can adversely affect the Gr carrier mobility. In this work, we demonstrate the possibility of growing highly uniform thin layers of Al_2O_3 by a seed-layer-free thermal ALD process on the surface of monolayer (1L) epitaxial Gr (EGr) on 4H-SiC(0001). Experimental results and DFT calculations indicated that this peculiar growth mechanism is related to the presence of the carbon buffer layer of EGr/SiC interface. The morphological, structural and electrical properties of the grown Al_2O_3 films have been investigated in details by different characterization techniques. Uniform and pinhole-free Al_2O_3 films with ~12 nm thickness have been observed by atomic force microscopy and cross-sectional transmission electron microscopy. Raman spectroscopy, carried out on the EGr before and after the Al_2O_3 deposition, indicated a negligible effect of the ALD process on the doping, strain and defectivity of EGr. Nanoscale current map by conductive atomic force microscopy showed highly uniform insulating properties of the Al_2O_3 on 1L EGr, with a breakdown field >8 MV/cm. These results can have important impact in epitaxial graphene device technology. ¹ CNR-IMM, Catania, Italy ² University of Palermo, Department of Physics and Chemistry E. Segre', Palermo, Italy ³ Department of Physics and Astronomy, University of Catania, Catania, Italy ⁴ Institute for Technical Physics and Materials Science Research, Centre for Energy Research, HAS, Budapest, Hungary ⁵ Department of Physics, Chemistry and Biology, Linköping University, Linköping, Sweden ^{*}presenting author: emanuela.schiliro@imm.cnr.it